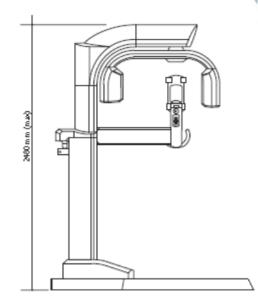
RADIATION DOSE ASSESSMENT OF RADIOSENSITIVE ORGANS USING MOSFET DETECTORS AND MONTE-CARLO BASED DOSIMETRY SOFTWARE PCXMC DURING DENTAL CONE BEAM COMPUTED TOMOGRAPHY EXAMINATIONS

Salman Altimyat, Khaled Soliman, Mousa Bakkari

Medical Physics Department; Prince Sultan Military Medical City. Riyadh, Saudi Arabia saltemiat@psmmc.med.sa



Purpose/Introduction

Dental cone beam computed tomography is a new imaging modality increasingly being used in the oral and maxillofacial radiology, mainly for implant planning and assessment of general bony and dental pathological conditions. European Commission, Radiation Protection No 172, Cone beam CT for dental and maxillofacial radiology, 2012 report mentions; that Medical Physicists are required to routinely monitor radiation doses from such modality.

We propose to establish an easily implemented method to assess the radiation dose delivered to the radiosensitive organs during imaging.

X-RAY TUBE SPECIFICATIONS

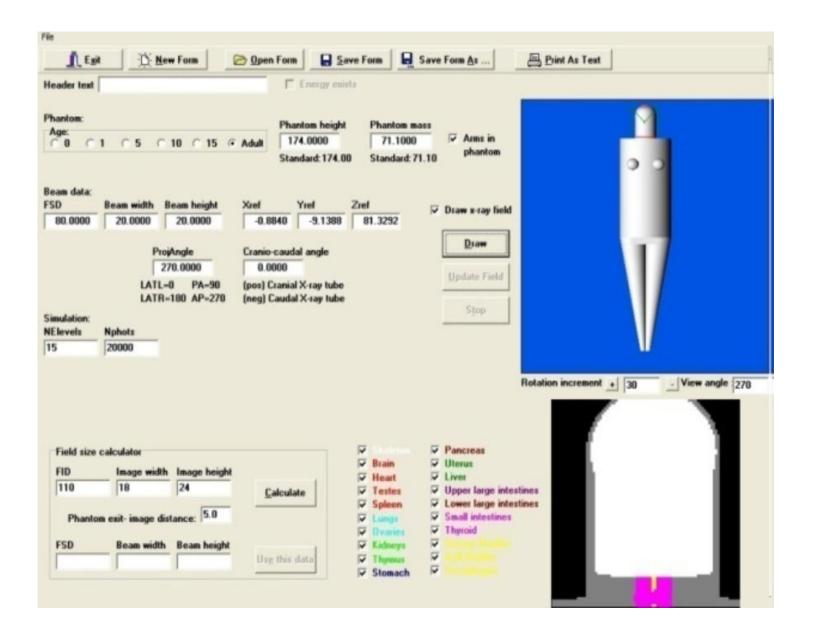
Focal spot
Target angle
Tube Voltage
Anodic Current

Methods

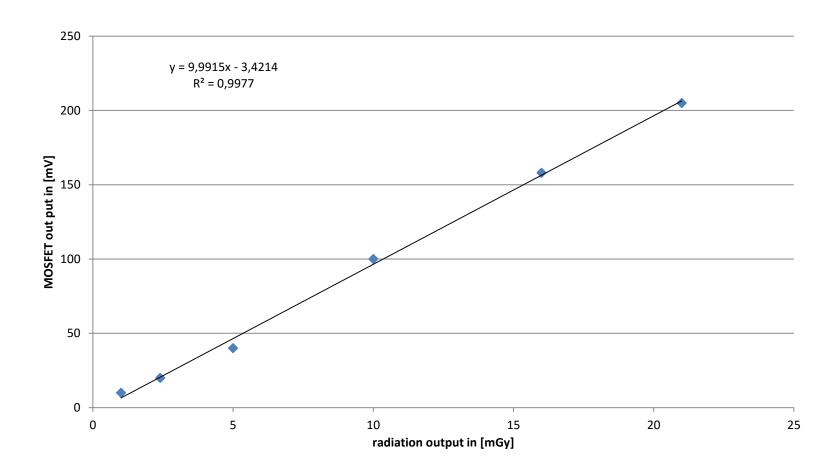
The MOSFET detectors were used to measure the patient eye and thyroid gland radiation doses by placing them directly over the area covering the mentioned organs of the anthropomorphic adult female phantom. The measured doses were compared with the calculated doses using PCXMC software (version 2.0).

FLAT PANEL DETECTOR

Type Amorphous sil	icon
Pixel size 0.254	mm
Active Area	mm


FIELDS OF VIEWS SIZE

Half ArchØ 60 mm x 60 mm
Dental Arch Ø 80 mm x 80 mm
Dental Arch Extended Ø 120 mm x 80 mm
Full Arch Ø 150 mm x 130 mm
Cephalometric Ø 200 mm x 170 mm


SCANNING PARAMETERS

Voxel size 100 to 500 µm
Voxel type
Scanning time
X-ray exposure time 6 to 9 s
Reconstruction time

PCXMC 2.0 INTERFACE

MOSFET calibration curve

MOSFET DOSIMETRY ERROR ANALYSIS

ERROR SOURCE IN (%)		
REPRODUCIBILITY %	4	16
ENERGY DEPENDENCE %	5	25
PHANTOM POSITION X DIRECTION%	15	225
PHANTOM POSITION Y DIRECTION%	15	225
X RAY SOURCE VARIATION %	5	25
PHANTOM TO PHANTOM VARIATION %	10	100
	SUM	616
	ERROR%	25

Results

Absorbed doses in (mGy) to the skin in the region of the eyes and thyroid were measured.

MOSFET detectors calibration factor was obtained by direct comparison with calibrated standard ionization chamber. The uncertainty factor was 15% for the kV range used by the scanner. The most common DCBCT examination is the full arch high resolution scan conducted at our hospital using the WhiteFox CBCT scanner.

The average measured eye and thyroid doses were 4.3 and 1.2 mGy respectively. The obtained results seem to agree with other published dosimetric studies.

Conclusions

The presented method can be used to routinely monitor radiation doses delivered to radiosensitive organs as result of imaging studies using DCBCT scanners in clinical environment

